Phytochrome-dependent coordinate control of distinct aspects of nuclear and plastid gene expression during anterograde signaling and photomorphogenesis
نویسندگان
چکیده
Light perception by photoreceptors impacts plastid transcription, development, and differentiation. This photoreceptor-dependent activity suggests a mechanism for photoregulation of gene expression in the nucleus and plastid that serves to coordinate expression of critical genes of these two organelles. This coordinate expression is required for proper stoichiometric accumulation of components needed for assembly of plastids, photosynthetic light-harvesting complexes and components such as phytochromes. Chloroplast-targeted sigma factors, which function together with the plastid-encoded RNA polymerase to regulate expression of plastid-encoded genes, and nuclear-encoded plastid development factors, such as GLK1 and GLK2, are targets of phytochrome regulation. Such phytochrome-dependent functions are hypothesized to allow light-dependent regulation, and feasibly tuning, of plastid components and function in response to changes in the external environment, which directly affects photosynthesis and the potential for light-induced damage. When the size and protein composition of the light-harvesting complexes are not tuned to the external environment, imbalances in electron transport can impact the cellular redox state and cause cellular damage. We show that phytochromes specifically regulate the expression of multiple factors that function to modulate plastid transcription and, thus, provide a paradigm for coordinate expression of the nuclear and plastid genomes in response to changes in external light conditions. As phytochromes respond to changes in the prevalent wavelengths of light and light intensity, we propose that specific phytochrome-dependent molecular mechanisms are used during light-dependent signaling between the nucleus and chloroplast during photomorphogenesis to coordinate chloroplast development with plant developmental stage and the external environment.
منابع مشابه
Phytochrome-induced SIG2 expression contributes to photoregulation of phytochrome signalling and photomorphogenesis in Arabidopsis thaliana
Chloroplast-localized sigma factor (SIG) proteins promote specificity of the plastid-encoded RNA polymerase. SIG2 function appears to be necessary for light-grown Arabidopsis thaliana plants. Specific photoreceptors or light-dependent factors that impact the light-induced accumulation of SIG2 have not been reported. A molecular link between phytochromes and nuclear-encoded SIG2, which impacts p...
متن کاملRegulation of photomorphogenesis by expression of mammalian biliverdin reductase in transgenic Arabidopsis plants.
The photoregulatory activity of the phytochrome photoreceptor requires the synthesis and covalent attachment of the linear tetrapyrrole prosthetic group phytochromobilin. Because the mammalian enzyme biliverdin IX alpha reductase (BVR) is able to functionally inactivate phytochromobilin in vitro, this investigation was undertaken to determine whether BVR expression in transgenic plants would pr...
متن کاملLoss of nuclear gene expression during the phytochrome A-mediated far-red block of greening response.
We have examined the expression of the HEMA1 gene, which encodes the key chlorophyll synthesis enzyme glutamyl-tRNA reductase, during the phytochrome A-mediated far-red light (FR) block of greening response in Arabidopsis. Our results demonstrate that the FR block of greening comprises two separate responses: a white light (WL) intensity-independent response that requires 3 d of FR and is assoc...
متن کاملConstitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis.
Light, in a quality- and quantity-dependent fashion, induces nuclear import of the plant photoreceptors phytochrome, promotes interaction of phytochrome A (phyA) and phyB with transcription factors including phytochrome interacting factor 3 (PIF3), and is thought to trigger a transcriptional cascade to regulate the expression of approximately 2500 genes in Arabidopsis thaliana. Here, we show th...
متن کاملPhotoreceptor partner FHY1 has an independent role in gene modulation and plant development under far-red light.
To incorporate the far-red light (FR) signal into a strategy for optimizing plant growth, FAR-RED ELONGATED HYPOCOTYL1 (FHY1) mediates the nuclear translocation of the FR photoreceptor phytochrome A (phyA) and facilitates the association of phyA with the promoters of numerous associated genes crucial for the response to environmental stimuli. However, whether FHY1 plays additional roles after F...
متن کامل